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We introduce a method for making short-term mortality forecasts
of a few months, illustrating it by estimating how many deaths
might have happened if some major shock had not occurred. We
apply the method to assess excess mortality from March to June
2020 in Denmark and Sweden as a result of the first wave of the
coronavirus pandemic; associated policy interventions; and behav-
ioral, healthcare, social, and economic changes. We chose to com-
pare Denmark and Sweden because reliable data were available
and because the two countries are similar but chose different re-
sponses to COVID-19: Denmark imposed a rather severe lockdown;
Sweden did not. We make forecasts by age and sex to predict
expected deaths if COVID-19 had not struck. Subtracting these
forecasts from observed deaths gives the excess death count. Ex-
cess deaths were lower in Denmark than Sweden during the first
wave of the pandemic. The later/earlier ratio we propose for
shortcasting is easy to understand, requires less data than more
elaborate approaches, and may be useful in many countries in
making both predictions about the future and the past to study
the impact on mortality of coronavirus and other epidemics. In the
application to Denmark and Sweden, prediction intervals are nar-
rower and bias is less than when forecasts are based on averages
of the last 5 y, as is often done. More generally, later/earlier ratios
may prove useful in short-term forecasting of illnesses and births
as well as economic and other activity that varies seasonally or
periodically.

short-term forecasting | mortality forecasting | excess deaths | coronavirus
pandemic | Denmark and Sweden

Suppose a period, perhaps 1 y long or somewhat shorter, can
be divided into two segments. Consider a population, per-

haps specified by sex and age category, e.g., women 65 through
74 y old. Let D be the number of deaths in the period. Let D− be
the death count in the earlier segment and let D+ be death count
in the later segment, such that D = D− − D+. Let π be the
proportion of deaths in the later segment:

π = D+

D
= D+

D− +D+. [1]

It follows that D+ = πD and D− = (1 − π)D. Hence, the later/
earlier ratio, denoted by υ (upsilon), is given by:

υ = D+

D− = π

1 − π
. [2]

Suppose values of υ over time periods are stationary, showing no
trend. Assessing whether a time series is stationary is a major
topic in statistical and economic analysis (1). Whether υ(t) can be
viewed as showing no trend can be checked (2, 3). Let �υ be the
average value. If υ(t) is stationary, then a forecast of D+ for the
current period is

D+ ≈ υD−. [3]

The time period could be a calendar year. In the Northern
Hemisphere, however, the accuracy of a short-term mortality
forecast might be greater if the time period were an epiyear
(epidemic year) starting in July and ending in late June. If in

addition to a winter peak of mortality, there is also a summer
peak, then nonsummer forecasts might be more accurate if the
time period studied began, say, in early October and ended, per-
haps, in late April.
Deaths might be observed in an earlier segment of the period,

say up through January 31, and a forecast might be needed for
the later segment after February 1. This task might be called
shortcasting imminent deaths, with shortcasting being a neolo-
gism for short-term forecasting. Statisticians, economists, epi-
demiologists, and others have developed powerful approaches to
shortcasting, especially when seasonal fluctuations are important
(4). This article focuses on a method that has the advantage of
simplicity and that yields relevant estimates of excess deaths due
to the COVID pandemic.
In medium-term and long-term mortality forecasting, predic-

tions are made about age-specific death rates and age-specific
population sizes; these values are used to derive death counts
(5–7). Such forecasts usually pertain to the future. There is
growing interest in forecasting mortality in the past using earlier
data, in part because alternative forecasting methods can be
evaluated by how well they predict what actually happened (8).
For the short-term forecasting considered here, it may be

possible, using Eq. 3, to forecast deaths in the later segment of a
time period based on deaths in the earlier segment of the period.
The later segment could be in the past, as in the example stressed
below about deaths between March and June 2020. Alterna-
tively, the later segment could be in the future, with the pre-
diction concerning something that has not yet been observed.
Death counts often show trends over time because of changes in
population age structure and changes in age-specific mortality.
Hence, it is problematic to forecast death counts based on
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averages of death counts in previous years. In some circum-
stances, however, later/earlier ratios may be fairly constant. This
would permit a remarkably simple approach to mortality
shortcasting.

Application
In both Denmark and Sweden, the first coronavirus death oc-
curred in week 11 of 2020, which began on March 9. Changes in
behavior, such as washing hands more frequently and keeping

mean = 0.45, sd = 0.08, cv = 17.73%

mean = 0.44, sd = 0.05, cv = 11.04%

mean = 0.46, sd = 0.05, cv = 10.39%

mean = 0.47, sd = 0.07, cv = 14.77%

mean = 0.44, sd = 0.02, cv = 5.47%

mean = 0.44, sd = 0.02, cv = 3.50%

mean = 0.39, sd = 0.03, cv = 8.64%

mean = 0.41, sd = 0.01, cv = 4.32%

mean = 0.43, sd = 0.01, cv = 3.07%

mean = 0.44, sd = 0.02, cv = 3.82%

mean = 0.44, sd = 0.01, cv = 3.37%

mean = 0.43, sd = 0.01, cv = 3.42%

mean = 0.43, sd = 0.01, cv = 1.67%

mean = 0.44, sd = 0.00, cv = 1.13%

mean = 0.43, sd = 0.01, cv = 1.56%

mean = 0.43, sd = 0.02, cv = 1.38%

mean = 0.44, sd = 0.02, cv = 4.68%

mean = 0.45, sd = 0.01, cv = 2.86%

mean = 0.44, sd = 0.01, cv = 3.03%

mean = 0.44, sd = 0.02, cv = 3.49%

mean = 0.44, sd = 0.01, cv = 2.49%

mean = 0.44, sd = 0.01, cv = 2.28%

mean = 0.43, sd = 0.01, cv = 2.43%

mean = 0.43, sd = 0.01, cv = 1.67%

mean = 0.44, sd = 0.01, cv = 3.13%

mean = 0.44, sd = 0.01, cv = 2.72%

mean = 0.43, sd = 0.01, cv = 2.82%

mean = 0.43, sd = 0.01, cv = 2.22%

mean = 0.42, sd = 0.01, cv = 2.83%

mean = 0.43, sd = 0.01, cv = 2.62%

mean = 0.42, sd = 0.01, cv = 1.91%

mean = 0.43, sd = 0.01, cv = 1.95%

mean = 0.44, sd = 0.01, cv = 2.61%

mean = 0.43, sd = 0.01, cv = 2.78%

mean = 0.43, sd = 0.01, cv = 3.17%

mean = 0.42, sd = 0.01, cv = 2.98%

mean = 0.42, sd = 0.02, cv = 3.96%

mean = 0.43, sd = 0.01, cv = 3.41%

mean = 0.43, sd = 0.01, cv = 2.95%

mean = 0.43, sd = 0.01, cv = 2.93%

[0,15) [15,65) [65,75) [75,85) 85+
F

em
ale

D
enm

ark
M

ale
D

enm
ark

F
em

ale
S

w
eden

M
ale

S
w

eden
F

em
ale

F
rance

M
ale

F
rance

F
em

ale
S

pain
M

ale
S

pain

0.
40

0.
50

0.
40

0.
50

0.
40

0.
50

0.
40

0.
50

0.
40

0.
50

2007−08
2008−09
2009−10
2010−11
2011−12
2012−13
2013−14
2014−15
2015−16
2016−17
2017−18
2018−19

2007−08
2008−09
2009−10
2010−11
2011−12
2012−13
2013−14
2014−15
2015−16
2016−17
2017−18
2018−19

2007−08
2008−09
2009−10
2010−11
2011−12
2012−13
2013−14
2014−15
2015−16
2016−17
2017−18
2018−19

2007−08
2008−09
2009−10
2010−11
2011−12
2012−13
2013−14
2014−15
2015−16
2016−17
2017−18
2018−19

2007−08
2008−09
2009−10
2010−11
2011−12
2012−13
2013−14
2014−15
2015−16
2016−17
2017−18
2018−19

2007−08
2008−09
2009−10
2010−11
2011−12
2012−13
2013−14
2014−15
2015−16
2016−17
2017−18
2018−19

2007−08
2008−09
2009−10
2010−11
2011−12
2012−13
2013−14
2014−15
2015−16
2016−17
2017−18
2018−19

2007−08
2008−09
2009−10
2010−11
2011−12
2012−13
2013−14
2014−15
2015−16
2016−17
2017−18
2018−19

Later/earlier ratio

E
p

iy
ea

r

Age group a a a a a[0,15) [15,65) [65,75) [75,85) 85+

Fig. 1. Ratios between deaths in the later and earlier segments of epiyears 2007–2008 through 2018–2019 for Danish, Swedish, French, and Spanish females
and males in five age groups (colored dots) and corresponding average ratios over epiyears (colored lines). The data for France are for the total national
population, labeled FRATNP in the data source, Short Term Mortality Fluctuations data series, Human Mortality Database (9).
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distance from others, started about this time in both countries,
and Denmark mandated the first official restrictions on social
interactions. Denmark and Sweden are ideal for comparing the
impacts of these alternative policies because in other respects
they are similar, with mutually understandable languages, inter-
twined histories, related cultures, and comparable political sys-
tems: They are two neighbors that keep a close eye on each
other.
Eq. 3 can be used to estimate expected deaths from week 11

through week 26 at the end of June if COVID-19 had not struck,
based on data from week 27, which started on July 1, 2019,
through week 10 in 2020. To estimate the average later/earlier
ratio �υ, we used readily available data (9) on weekly death counts
in Denmark and Sweden for five age categories (0 to 14, 15 to 64,
65 to 74, 75 to 84, and 85+) and 12 epiyears (2007–2008,
2008–2009, . . ., 2018–2019). The time series of the 12 later/ear-
lier ratios by country and sex were found stationary through the
augmented Dickey–Fuller test (2) and the Kwiatkowski–
Phillips–Schmidt–Shin test (3). To check whether later/earlier
ratios might also be fairly constant in other countries, we also
present data on France and Spain from the same data source.
The data pertain to International Organization for Standardiza-
tion (ISO) weeks, which are widely used by governments and or-
ganizations for budget years (10). Each week’s year is the
Gregorian year in which the first Thursday falls. All weeks start
with Monday. Hence, the first week of the year always includes
January 4. The five age categories limited the scope of our analysis
but yielded useful findings. Because so few deaths occur between
ages 0 and 15, stochastic fluctuations were larger for this category
than the other categories. The category 15 to 64 is broad but,
because relatively few deaths occur at these ages, this was not a
major problem.
Fig. 1 shows the later/earlier ratios for Danish, Swedish,

French, and Spanish females and males from epiyear 2007–2008
through 2018–2019 for the five age categories, which are denoted
by five colors. The average values of the later/earlier ratios,
marked by vertical lines, for the five age categories, two sexes,
and four countries range from 0.39 to 0.47. For three-quarters of
the 40 later/earlier ratios, the average value was either 0.43
or 0.44.
Variation in the youngest category, which included few deaths,

was greater than in the other categories but only modestly
greater. For ages above 15, SDs were mostly 0.01, with a couple
of cases of 0.02. Coefficients of variation were, except for chil-
dren, between 0.01 and 0.05.
Why are the SDs and the coefficients of variation as small as

they are? That is, why are death counts in the earlier segment of
an epiyear so closely associated with death counts in the later
segment? This merits close examination. The severity of influ-
enza mortality earlier in an epiyear may predict the severity later
in the year. Severe weather conditions before March may be
correlated with severe conditions in March through June. Deeper
understanding of the close link between death counts in the
earlier and later segments might further improve the sophisti-
cated time-series models that have been developed to study
seasonal patterns of mortality, including the impact of influenza
epidemics (11–16).
Using the average later/earlier ratios in Fig. 1, we applied Eq.

3 to estimate the expected number of deaths (in the absence of
the coronavirus pandemic) by sex and age for Denmark and
Sweden from week 11 through week 26 in 2020. We then calcu-
lated excess deaths by subtracting the expected number of deaths
from the reported number of deaths. Table 1 summarizes the
results about observed, expected, excess, and COVID deaths for
the entire populations of Denmark and Sweden. Table 2 breaks
observed, expected, and excess deaths down by age and sex.
Consider the total observed (16,663), expected (16,146) and

excess (16,663 − 16,146 = 517) deaths in Denmark shown in

Table 1. The observed deaths were 3.1% higher than the expected
deaths. The coronavirus pandemic—and the various policy in-
terventions and behavioral, social, economic, health, and health-
care changes resulting from it—increased Danish mortality by 517
deaths, a modest 1/30th more than we predict would have oc-
curred if COVID-19 had not struck.
Sweden is different. Death counts were considerably higher—32,172

observed deaths, 25,927 expected deaths, yielding 6,245 excess
deaths. The Swedish population is 60% larger than the Danish
population and expected deaths were also 60% higher. To compare
the two populations, the key statistic is that excess deaths accounted
for 19.4% —almost a fifth—of observed deaths in Sweden but only
3.1% in Denmark. If Sweden had been as successful as Denmark in
averting excess deaths, Sweden would have lost about 5,200 fewer
lives, given by 32,172 × (0.194 − 0.031) = 5,242.
Estimation of the deaths that would have occurred in the

absence of the coronavirus pandemic depends on Eq. 3, which
hinges on the assumption that the later/earlier ratio in epiyear
2019–2020 equals the average of the later/earlier ratio in previ-
ous years. This might not be true. Our estimates of expected
deaths and, hence, excess deaths are thus uncertain. The prob-
ability distribution of expected deaths is not known and a
mathematical formula for it cannot be readily derived. A statis-
tical strategy known as bootstrapping can, however, be used to
assess how much the actual later/earlier ratio in epiyear 2019–2020,
which is unknown, might differ from its average value in previous
years (17, 18).
We applied this statistical technique, using the 12 y of data

from epiyears 2008–2009 through 2018–2019 by age group,
country, and sex. From the 12 later/earlier ratios, we randomly
drew one, with replacement. We multiplied the ratio by the
observed number of deaths in the first part of epiyear 2019–2020
to get the expected number of deaths in the second part of
epiyear 2019–2020. We assumed that death counts followed a
Poisson distribution defined by the expected number of deaths
(19). We randomly chose a death count from the Poisson dis-
tribution. We repeated this 100,000 times to approximate the
distribution of expected number of deaths. From this distribu-
tion, we derived empirical percentiles for excess deaths. The
resulting prediction intervals reflect considerable uncertainty but
are reassuringly narrow, ranging from roughly 15,000 to 17,000
deaths for Denmark and roughly 24,000 to 28,000 deaths for
Sweden. This is consistent with the variation in later/earlier ra-
tios shown in Fig. 1.
We also used the bootstrapping approach to estimate uncer-

tainty about how many excess deaths would have occurred in
Sweden if instead of a 19.4% excess death rate, the Swedish rate
had been at the Danish level of 3.1%. As noted above, our es-
timate is that Sweden would have lost about 5,200 fewer lives:
The 95% prediction interval ranges from 3,620 to 6,135. This
indicates that different policies and conditions in Sweden
resulted in thousands of extra deaths.
The width of the prediction intervals for excess deaths given in

Table 1 equals the width of the prediction intervals for expected
deaths, because excess and expected deaths differ by a known
quantity, namely, the number of observed deaths. For instance,
the width of the prediction interval for expected and for excess
deaths in Sweden is 3538 = 27730 – 24192 = 7980 − 4442. Since
excess deaths are only a fraction of expected deaths, the relative
width of prediction intervals is greater for excess deaths. The
absolute uncertainty is the same, but the relative uncertainty is
much greater. Because the main interest is in excess deaths, it is
reassuring that the lower and upper bounds for excess deaths
allow some major conclusions to be drawn: 1) excess deaths in
Denmark probably were greater than zero but less than 2,000, 2)
excess deaths in Sweden were probably between 4,000 and 8,000,
and 3) excess deaths as a proportion of observed deaths were
considerably lower in Denmark than in Sweden (because the
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upper bound of excess deaths as a proportion of observed deaths
for Denmark, 10.2%, is less than the lower bound, 13.8%,
for Sweden).
As shown in Table 1, in Denmark excess deaths were slightly

less than reported COVID deaths, whereas in Sweden excess
deaths exceeded reported COVID deaths. It is difficult to rig-
orously determine whether a death was due to COVID-19 or
some other, perhaps preexisting, condition. Deaths in hospital
might be classified more often as due to COVID-19 than deaths
out of hospital. Furthermore, policy interventions; behavioral
changes; and altered economic, social, health, and hospital con-
ditions may have led to the net loss of lives from causes other than
the coronavirus. A further complication is that some of those who
died from COVID-19 might otherwise have died before the end
of June from some other cause. Such deaths would increase the
number of COVID deaths but not the number of excess deaths.
In Denmark, there were 517 excess deaths and 604 COVID

deaths. In Sweden, the 6,245 excess deaths exceeded the 5,447
COVID deaths by almost 800 cases. Excess deaths exceeded
COVID deaths by 15% in Sweden while excess deaths were 14%
less than COVID deaths in Denmark. In Sweden, either COVID
deaths were underreported or lives were lost on balance from
other causes as a result of the turmoil resulting from the coro-
navirus pandemic. In Denmark, policy interventions and behav-
ioral and other changes reduced mortality from other causes by
more than the mortality from COVID-19. This merits deeper
analysis.

Using the statistics in Table 2, the excess mortality in Denmark
and in Sweden can be broken down by age and sex. In Denmark,
more than half of the lives lost were for people aged 75 through
84, and a further third were lost among people above 85. Excess
deaths of females were roughly comparable to excess deaths for
males, except for people between 15 and 64: In this broad cat-
egory, our estimate is that 47 women’s lives were lost, and 90
men’s lives were saved. Close to half of all excess deaths among
women and fully three-fifths of excess deaths among men oc-
curred in the decade of age between 75 and 85.
The age and sex breakdowns of excess deaths in Sweden are

rather different. Half of the excess deaths occurred after age 85,
while a third occurred between 75 and 84. Except at the highest
ages, the toll of excess mortality was higher for men than for
women. For females, however, many extra deaths occurred after
age 85: These accounted for 60% of all extra deaths at ages 85+.
For males, ages 75 to 84 and 85+ were about equally important
and together accounted for three-quarters of all excess male
mortality.
The female excess deaths in Sweden after age 85 were 25%

higher than the expected number. In Denmark, in contrast, fe-
male excess deaths age 85+ were only 2% higher than expected.
If in Sweden the pandemic-related mortality of women at the
oldest ages had been kept to the Danish levels, then 1,392 lives
would have been saved, half of the total of 2,784 Swedish excess
deaths for women. This discrepancy may be a result of differ-
ences between Sweden and Denmark in how care and housing

Table 1. Deaths in week 11 through week 26 in Denmark and Sweden

Denmark Sweden

Lower PI Upper PI Lower PI Upper PI

Observed deaths 16,663 32,172
Expected deaths 14,955 16,146 17,362 24,192 25,927 27,730
Excess deaths −699 517 1,708 4,442 6,245 7,980
Excess/observed deaths, % −4.2 3.1 10.2 13.8 19.4 24.8
COVID deaths 604 5,447

The lower and upper values give the 95% prediction interval (PI).

Table 2. Observed, expected, and excess deaths in later segment (week 11 through week 26) of
epiyear 2019–2020 by age group, sex, and country

Age Denmark female Denmark male Sweden female Sweden male

0 to 14 Observed deaths 29 55 55 78
Expected deaths 33 52 53 65
Excess deaths −4 3 2 13

95% prediction interval −21 to 10 −17 to 19 −17 to 19 −12 to 35
15 to 64 Observed deaths 868 1,359 1,088 1,954

Expected deaths 821 1,449 1,100 1,536
Excess deaths 47 −90 −12 418

95% prediction interval −26 to 124 −229 to 32 −108 to 86 321 to 568
65 to 74 Observed deaths 1,302 1,986 1,883 2,924

Expected deaths 1,301 1,958 1,763 2,437
Excess deaths 1 28 120 487

95% prediction interval −135 to 126 −100 to 170 −7 to 252 304 to 662
75 to 84 Observed deaths 2,427 2,830 4,360 5,409

Expected deaths 2,252 2,637 3,410 4,161
Excess deaths 175 193 950 1,248

95% prediction interval 30 to 357 −1 to 346 694 to 1,129 1,050 to 1,473
85+ Observed deaths 3,494 2,313 8,613 5,808

Expected deaths 3,433 2,210 6,889 4,513
Excess deaths 61 103 1,724 1,295

95% prediction interval −147 to 272 −53 to 252 1,280 to 2,203 937 to 1,553
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for the elderly are organized, coupled with a less successful
Swedish strategy of shielding the elderly.
Some of the estimates and lower bounds of excess deaths in

Table 2 are negative. Negative values imply the saving of lives.
Other values for ages up to age 75 are positive but fairly close to
zero relative to the much larger tolls of excess deaths after age
75. Analyzing why some lives may have been saved and relatively
few lives were lost before age 75 would shed light not only on the
pandemic itself but also on the impact of the social, economic,
and healthcare changes that accompanied the pandemic.

Perspectives
This note presents an approach to shortcasting, with a policy-
relevant application. Much more research is warranted. Publi-
cation of the concept and example may spur discussion and
elaboration. Research comparing the accuracy and bias of al-
ternative shortcasting methods is needed. The average later/
earlier strategy proposed here has the advantage of simplicity,
but it is unlikely to prove to be the most accurate and least biased
way to forecast excess deaths during the first wave of the COVID
pandemic or in other applications if more detailed data are
available.
Preliminary comparisons with studies using more detailed data

and sophisticated methods suggest that the average later/earlier
strategy does not yield radically different estimates of excess
deaths (20). This is reassuring, as are the results presented below
that the later/earlier approach is superior to the equally simple
5-y-average method that has been and is being widely employed.
Time-series methods that use more information, e.g., about
levels and patterns of weekly death counts, about correlations
among countries and regions, and about covariates such as
temperature, may well give more precise forecasts (11, 21–23).
Use of the average later/earlier ratio, however, may be of value
when it is advantageous to use a method that requires little
statistical information, is easy to explain, and yields serviceably
narrow prediction intervals.
The application of the method to excess deaths from March to

June 2020 is highly relevant but narrow. Estimates of excess
deaths after June 2020 are of urgent interest, but a different
method has to be used. The method would have yielded useful
forecasts of deaths in Denmark, Sweden, France, and Spain and
perhaps other countries from March to June of earlier years—
not forecasts if some unique shock had not happened, but ordinary
forecasts based on observed deaths in July of the previous year
through February. Hence, in the future, the method might be of
value in predicting deaths in some period, say January through
April, based on deaths in a prior period, say September through
December, supplementing the elaborate methods developed by
influenza epidemiologists. To explore this, later/earlier ratios for
various time periods could be studied. Shortcasting imminent
deaths by age, sex, and perhaps other characteristics is of interest
to pension companies, health-care systems, nursing homes, churches,
funeral parlors, tax authorities, and other organizations.
Meteorologists make short-term forecasts of temperature,

rainfall, and flooding risks. Economists make short-term fore-
casts of various kinds of economic activity, from rates of inter-
national growth, interest, and unemployment to the sales of
particular products by specific manufacturers in small regions.
Epidemiologists have developed sophisticated methods for fore-
casting weekly influenza infections and deaths in a flu season
based on data early in the season (24, 25). Many of these short-
casts have strong seasonal or periodic components. Eq. 3 might
also be used for various kinds of shortcasting, such as forecasting
the incidence of heart attacks, the number of births, or sales of a
product—provided the later/earlier ratio over some duration is
approximately constant over time.
Sometimes what is of interest is not a forecast of the future but

a forecast of what would have happened in the absence of a

shock. Those who like to second-guess history ask: suppose
Hannibal vanquished Rome, suppose Napoleon won the battle
of Waterloo, suppose Lee was victorious at Gettysburg? Indi-
viduals occasionally ask themselves—what might have happened
if I had done something different? In this article, we make
forecasts to estimate excess deaths: Excess deaths are actual
deaths minus expected deaths if a major shock had not occurred.
We hypothesize that the range of applications is much broader
than this and includes forecasts of the future as well as of the
past and forecasts of different kinds of stationary time series that
show seasonality. Whether this is true remains to be shown. In-
deed, whether our analysis of excess deaths in Denmark and
Sweden can be usefully extended to other countries and regions
remains to be shown, although the data for France and Spain
encourage some optimism.
Careful attention should be devoted to how accurate and

unbiased the use of the average later/earlier ratio in Eq. 3 is in
short-term forecasting compared with alternative strategies, in-
cluding SARIMA models (11) and Serfling regression (22).
These alternative approaches are often used to forecast weekly
deaths. To use a later/earlier forecast to estimate weekly deaths
in the later period, a method is needed to decompose the total
into weekly levels. One strategy is to modify the method for
killing off cohorts that are not extinct (26).
Of particular current interest is estimation of total excess

deaths from the coronavirus in March through June 2020. Expected
deaths over the first wave of the pandemic commonly have been
estimated by taking the average of deaths in the past five cor-
responding periods (27, 28). Like the later/earlier ratio ap-
proach, this method requires modest statistical information and
is easy to explain. As indicated in Fig. 2, for Danish and Swedish
men and women as well as for French and Spanish men and
women, numbers of deaths vary considerably across epiyears, but
the number in the second segment of the year tend to be cor-
related with the number in the first segment. Hence, using in-
formation about deaths in the first segment can improve
forecasts of deaths in the second segment. This is the basic ad-
vantage of using average later/earlier ratios rather than average
death counts.
The slopes �υ, the average later/earlier ratio, of the regression

lines D+(t) = �υ D−(t) are remarkably similar across population
and sex: 0.436 for Danish females, 0.439 for Danish males, 0.432
for Swedish females, 0.431 for Swedish males, 0.423 for French
females, 0.430 for French males, 0.423 for Spanish females, and
0.427 for Spanish males.
When comparing two alternative models, the criterion is often

goodness of fit adjusted for the number of parameters. For ex-
ample, the goodness of fit of the regression lines in Fig. 2 might
be assessed by the sum of the squares of the deviations of the
points from the lines. In evaluating forecasting strategies, how-
ever, prediction error and prediction bias are preferred over
goodness of fit because models that fit well can yield poor pre-
dictions (29). Prediction error and bias can be estimated by
analysis of forecasts of the past. Data up to some time are used
to forecast to some later time in the past. The forecast can then
be compared with the known actual outcome.
The advantage of using later/earlier ratios rather than 5-y

averages is revealed by prediction errors estimated by this method
of historical forecasts. In Table 3, the standard measure of pre-
diction error, the square root of the mean of squared errors
(RMSE), is shown for the later/earlier method and for the
5-y-average method for males and females in five age categories
in Denmark and Sweden.
In only 1 of the 20 cases is the RMSE smaller for the

5-y-average approach. At the ages when most excess deaths oc-
curred, 75 to 84 and 85+, the average RMSE for the 5-y-average
method was 70% higher than the value for the later/earlier
strategy. RMSE is commonly used in forecasting research as a
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measure of how close predictions are to actual values, and that is
the way we are using it here rather than as a property of an es-
timator. It is worth noting, however, that since the RMSE of the
5-y-average method is 70% higher at older ages than the RMSE
for the later/earlier approach, prediction intervals will be about
70% wider, making it more problematic to draw conclusions.
Forecasting methods are also judged on whether they tend to

be biased, systematically underpredicting or overpredicting. In
our comparisons of the later/earlier approach and the 5-y-average
method for males and females in Denmark and Sweden for five
age categories, the mean percentage error (MPE) using the later/
earlier approach was −1.44% compared to −2.65% resulting from
the 5-year-average method. We also computed the absolute per-
centage error (MAPE), which yielded a value of 4.7% for the
later/earlier approach, considerably closer to zero than the value
of 7.7% for the 5-y-average method.
Our prediction intervals are narrow enough and the bias is

small enough to let us reach conclusions about excess deaths in
Denmark vs. Sweden, in males vs. females, and in various age
groups. A goal of future research should be to further reduce
uncertainties in forecasts of expected deaths.
In Denmark and Sweden, various data registries include ex-

tensive information about individuals, including detailed data

about health care and health status as well as information about
education, occupation, place of residence, living arrangements,
and much else. Information is also available on the environment,
such as daily outdoor temperature and pollution levels. Much is
known and more details are being added every year. Perhaps
application of machine learning to these data will yield reliable
predictions of when a person might die. If so, simple, aggregate
methods such as the one proposed in this article may eventually
be superseded by complicated algorithms using detailed indi-
vidual data. Until now, however, this vision is far from opera-
tional. In the interim, barebone approaches such as use of later/
earlier ratios might yield serviceably accurate forecasts and be
more intuitively understandable than data-intensive machine
learning.
Later/earlier ratios can be applied to the data available in

Denmark, Sweden, and other countries on broad characteristics
of individuals who died in some period. In this article, we focused
on two characteristics—sex and age. It is known whether a de-
ceased person 1) lived in a rural or urban area; 2) was living
alone, cohabiting with a few others, or living institutionally; 3)
was childless or had one, two, or more children; 4) was born in
Denmark, in a country in the Near East or Africa, or elsewhere;
5) was working, a student, unemployed, or retired; 6) had a few
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Fig. 2. Deaths in the later vs. earlier segments of epiyears 2007–2008 through 2018–2019 for Danish and Swedish females and males. The slopes of the
regression lines equal the values of �υ, the average later/earlier ratio.

Table 3. Accuracy measures: RMSE observed vs. fitted with the later/earlier ratio method and with the 5-y-average method both
applied to the previous 5 y of data, by age group, sex, and country for epiyears 2012–2013 through 2018–2019

Age

Denmark female Denmark male Sweden female Sweden male

RMSE later/
earlier

RMSE 5-y
average

RMSE later/
earlier

RMSE 5-y
average

RMSE later/
earlier

RMSE 5-y
average

RMSE later/
earlier

RMSE 5-y
average

0 to 14 8 8 6 9 4 9 13 15
15 to 64 41 93 69 157 41 111 69 186
65 to 74 73 43 70 76 56 118 90 176
75 to 84 79 125 70 162 66 150 93 125
85+ 99 132 44 145 220 236 82 180
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years or many years of education; 7) was in the lower or upper
range of an affluence index; 8) had no, a couple, or several chronic
conditions; and many other characteristics. Later/earlier ratios
could be applied to determine expected deaths (and, hence, excess
deaths) for people classified into subpopulations according to one
or more of these characteristics. What proportion, for instance, of
observed deaths were excess deaths (i.e., observed minus expec-
ted) among males above 65 living alone in Copenhagen?
Up until now, it is not possible, except for some people on

their death beds, to accurately forecast when a person might die.
Yet it is possible to estimate how many people in a population
will die the next day, week, month, or year. It is not possible to
pinpoint the date of the death of an individual or the cause of
death, because the cause has immediate, proximate, underlying,
and earlier-life components and hinges not only on an individ-
ual’s personal characteristics but also on availability and excel-
lence of medical care, air quality, family and social networks, and
many other factors (30). It is, however, feasible—and this is a
remarkable achievement of demography—to forecast death counts
by age and sex in a population in the short term and, with de-
creasing accuracy, in the medium and long term (31). Further-
more, informative forecasts can be made of how many deaths

would have occurred if some major change in mortality condi-
tions had not happened. Such shortcasting is highly relevant in
the time of COVID-19.

Data Availability. All study data are included in the article and/or
supporting information. Previously published data were used for
this work (https://www.mortality.org).
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